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A class of representations of affine Kac-Moody algebras 

Richard H Capps 
Department of Physics, Purdue University, West Lafayette, I N  47907, USA 

Received 28 February 1990 

Abstract. In one class of representations of simple affine algebras, there is a highest weight 
A, while all other dominant weights are of the form A - 96, where q is a positive integer 
and S is a vector called the null vector. These representations are enumerated and a simple 
recursive formula is given for their weight multiplicities. The derivation of the formula 
illustrates some important features of affine algebras. 

1. Introduction 

Affine Kac-Moody algebras are important in many branches of modern physics, 
including string theories, conformal field theories and other field theories. In many 
models the physically realized irreps (irreducible representations) are of a simple type; 
they contain a highest weight A while all other contained dominant weights are of the 
form A - q8, where q is a positive integer and S is a vector called the null vector. The 
purpose of this paper is to give a simple formula for finding all the weights in these irreps. 

The basic properties of affine algebras have been given in the literature [l-31 and 
are summarized in section 2. A weight of a finite algebra of rank n may be characterized 
by n integral components, called here Dynkin components. A weight of an affine 
algebra of rank n is characterized by n integral Dynkin parameters and one other 
parameter, a null-depth parameter. For both finite and affine algebras a dominant 
weight is a weight with no negative Dynkin components. 

It is convenient to organize the weights of a highest weight irrep in Weyl orbits, 
because the multiplicities of all weights in an orbit are the same in every irrep. Each 
orbit contains exactly one dominant weight, and is characterized by this weight. The 
problem of constructing an irrep may be separated into three steps. In the first, one 
finds the dominant weights in the irrep. In the second, one finds the multiplicities of 
these dominant weights. In the third, one finds the other weights in the orbit of each 
dominant weight, or alternately, finds a rule for identifying the orbit of each weight. 
Simple rules for the first and third steps for all highest weight irreps exist, and have 
been given in a previous reference [3]. We are concerned here only with the second 
step, finding the multiplicities. 

No simple general formula exists for the multiplicities. This is clear because no 
such formula exists for finite algebras, which are subalgebras of affine algebras. 
Constructional procedures for finding these multiplicities do exist, the most useful one 
employing the Freudenthal recursion formula. 

For each dominant set of Dynkin components in a highest weight irrep of an affine 
algebra, there is an infinite sequence of dominant weights, corresponding to increasing 
null depth. It is helpful to picture a change in null depth as a change in vertical 
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4728 R H Capps 

position, and a change in components at the same null depth as a change in horizontal 
position. The width of an irrep, a finite number, may be defined as the number of 
dominant sets of Dynkin components in the irrep; this dimension is related to the sizes 
of irreps of finite algebras. Although the 'heights' of the affine irreps are infinite, in 
many cases the variation of multiplicity with null depth satisfies simple mathematical 
relations. 

Although the quantities are defined precisely later, the general form of the main 
result will be given in this section. We are concerned with irreps of width one, called 
here narrow irreps. The contained dominant weights are A - q8, where 6 is defined in 
section 2,  and q ranges through all the non-negative integers. Let W ( q )  be the 
multiplicity of A - q8. Then W ( 0 )  = 1 .  The other multiplicities may be determined 
successively from the formula, 

9 

i = l  
W ( q ) = ( l / q )  C FiW(q-i) .  

The integer Fi may be determined from the equation 

where the sum over j is over all integral factors of i and the X, are integers that depend 
on the irrep and the algebra, and are given in section 4. These Xj  take on no more 
than two values for any of the irreps. 

Other simple formulae for many irreps of affine algebras are known; many are 
given in terms of theta functions and other generating functions [4-61. However, the 
formula given here has several attractive features. It is simple, and one can use it to 
calculate the multiplicities of a narrow irrep (down to some desired null depth) by 
hand in a small amount of time. If multiplicities for many irreps are desired, the 
formula is suitable for a small computer or programmable hand calculator. 

The narrow irreps are listed in section 3. Section 5 contains a derivation of the 
mu!tiplicity formula for many of the narrow irreps; it is not necessary to read this 
section to apply the formula. However, the derivation involves several cancellations, 
and reveals much about the structures of the algebras. 

2. Basic properties of affine algebras 

A simple affine algebra of rank n is represented by an indecomposable Coxeter-Dynkin 
diagram with n vertices, numbered here from 1 to n. Each vertex represents a simple 
root Ri. The generalized, n by n Cartan matrix A is defined by the scalar product 
equation, 

Aij = (Rz, R j ) ( l /R; )*  (2.1) 

mi = (M, R i ) ( 2 / R f ) .  (2 .2)  

The n Dynkin components of a weight M are denoted by mi and defined by 

One may specify a weight of a highest weight irrep by the n Dynkin components and 
the displacement Ph, defined to be the number of times the simple root Rh is subtracted 
from the highest weight to obtain M. Any simple root may be chosen for Rh. 
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The determinant of A is zero for affine algebras. There is a null vector S that 
satisfies the equation SA = 0, where S is a row vector. The coefficients ci of the 6 vector 
are coefficients in an exyansion in the simple roots, i.e. 

6 = ciRi. 
I 

(2.3) 

The vector 6 is normz!ized by the condition that the c, are as small as possible, 
consistent with all being positive integers. These c, are called marks. Let a, be a root 
such that af  # 0. The co-root ay is defined by the equation, 

a :  = a,(2/af ) .  (2.4) 

The co-marks cy are defined by writing 6 as a linear combination of the simple co-roots, 
i.e. s =x, C ~ R ; .  Therefore, cy = c , ~ f / 2 .  

The ratios of the lengths of the simple roots are given by the Cartan matrix. The 
overall root normalization is specified by the condition that the roots are as short as 
possible, consistent with the co-mprks all being integers. The twist k of an algebra is 
given in terms ofthe longest simple root RI by the formula k = fR:.  The Coxeter-Dynkin 
diagrams for the untwisted simple algebras are given in figure 1 and the diagrams for - 

1 
A ' ; :  

Ai ; '  1 / 2 2 )  
1 1  

6';' 11 3 3 1  . . .  a 
1 2 2  2 2111 

- 
1 2 311) 

4 - 
1 2 3 412) 2111 

E' "  n 
0 

1 2 3 4 5 6 L 2  

Figure 1. Diagrams for the untwisted affine algebras. An arrow points to the smaller of 
two connecting unequal roots, and the integer 1 is one less than the number of vertices. 
The first numbers by the vertices are the marks. If a co-mark is different from its mark, it 
is shown in parentheses after the mark. 
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the twisted algebras are given in figure 2. The superscript number in parentheses is 
the twist. The names of the algebras are taken from [l]. 

If a weight Q may be written as a linear combination of the simple co-roots, i.e. 
Q = X i  Qr R r ,  where the Qr are numerical coefficients, then it follows from the preced- 
ing arguments that if M is any weight, 

The level L of a weight M is defined by the scalar product equation [2.3], 

L ( M ) = ( M ,  6 ) = C  m,c:.  (2.6) 
I 

The levels of all roots are zero and the levels of all weights in an irrep are the same. 
If we exclude the trivial zero weight, the level of every dominant weight is positive. 

The vectors jS, where j is a positive or negative integer, are all roots, called imaginary 
roots. All other roots are called real roots. 

The finite subalgebra y h  (called here a basic subalgebra) is obtained by ignoring 
the simple root Rh of the affine algebra, i.e. by ignoring the h vertex and connecting 
lines of the Coxeter-Dynkin diagram. The subweight with respect to Sh of an affine 
weight M is obtained by ignoring the Dynkin component mh. 

A scalar product may be defined for any two weights if one chooses one of the 
basic subalgebras y h .  Then the scalar product is 

( M, Q> = -[ ph ( M ) L( Q )  f pr, ( 0) L( >I eh I -k ( M ,  Q > h  (2.7) 
where ( M ,  Q ) h  is the scalar product of the subweights with respect to 9,. If the weight 
Q is of level 0 it can be shown that this expression reduces to (2.5). 

The null depth of a weight may be defined as &/ch. The null depth is a convenient 
parameter when one compares weights with the same Dynkin components, since it is 

2 - A 1 2 '  

2111 l(21 

A 1 2 '  2,-, ( l a 3 1  . . . a 
1 2 2  2 1121 

6 
E 121 

1 2 3 2141 1121 

4 - o i 3 '  

1 2 1131 

Figure 2. Diagrams for the twisted affine algebras. The notation is the same as that of 
figure 1. 
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independent of the choice of the index h. The displacement Ph is convenient when 
one compares weights with different Dynkin components, since it is always integral. 

3. The narrow representations 

The set of Dynkin components A‘ will appear in the irrep with highest weight A if and 
only if A and A‘ are congruent (in the same congruency class) [3]. Thus we must 
examine all the affine algebras and find all sets of dominant Dynkin components that 
are not congruent to any other set. Two sets of Dynkin components are congruent if 
and only if they satisfy two conditions: (i) They are on the same level, and (ii)  the 
subweights with respect to any fundamental subalgebra are congruent, where a funda- 
mental subalgebra is a basic subalgebra Y,, such that the mark ch is unity [3]. Application 
of this criterion is straightforward, but somewhat subtle, since both marks and co-marks 
are involved. 

We examine first all the irreps of level 1. For this analysis the algebras of figures 
and 2 may be grouped into three classes: 

Class I. The simply laced algebras. These are the Ai”, Oil), and E ; ”  algebras, all 
untwisted. 

Class 11. The untwisted ( k  = 1) algebras with non-zero roots of more than one length. 

Class III. The twisted ( k  = 2 or 3)  algebras. 

Examination of the diagrams of figures 1 and 2 shows that for all the algebras of 
classes I and I11 all level 1 irreps are narrow. Furthermore, when there are two or 
more such irreps of the same algebra, they are related by an obvious translation 
or rotation of the diagram, so their multiplicity structures are the same. 

I illustrate by considering the algebra Ek”, of figure 1. The roots are numbered 
according to the scheme 

7 

6 

1 2 3 4 5  

There are three dominant level 1 weights, with sets of Dynkin components, A l  = 
(lOOOOOO), A2 = (OOOOlOO), and A3 = (OOOOOOl), related by diagram rotations. Let us 
determine congruency by using the fundamental subalgebra 9,. There are three triality 
classes for this E6 algebra, corresponding to m, + 2 m 2 +  m4+2m, (mod 3). Therefore, 
the classes of A , ,  A2,  and A,,  respectively, are 1, 2, and 0. ( In  all the algebras of class 
I there is one level 1 irrep of each congruency class.) 

The situation is quite different for the class I1 algebras, which are the algebras Bj”, 

I1 algebra contains two or more level 1 irreps that are congruent to each other, and 
so are not narrow. For each algebra the irrep (100. . .) is such an irrep, where the first 
vertex is the left-hand vertex in figure 1. 

In fact, there is only one level 1 series of narrow irreps of class 11. If the right-hand 
(short) root of the diagram for B ! ’ ) ( 1 3  3 )  is numbered 1, then the irrep hi = Si,  (where 
hi are the Dynkin components of A )  is narrow. This can be seen by determining 
congruency by means of the subalgebra Y,, which corresponds to B f .  There are two 

C(l) , G(lI , a nd I?,’). Whereas every level 1 irrep of class I or 111 is narrow, every class 
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congruency classes for B,, given by ml (mod 2). The irrep h i  = Si, is in the odd (spinor) 
class, while the other two level 1 irreps are in the even (tensor) class. 

There is one other level 1 narrow irrep of class 11, obtained by identifying the unit 
Dynkin component with the short root (middle vertex) of Cy). However, this algebra 
could have been called B y ) ,  and will be called that here. Hence, the only narrow irreps 
of class I1 are those associated with the algebras B { ’ ) ( I Z  2). 

Next we consider levels greater than 1. An examination reveals that there are no 
narrow irreps with levels of 3 or greater, and only one series of level 2. This is the 
series (10 ,  . . 01) of Dj;),(lZ 2). The two unit Dynkin components correspond to the 
two shorter simple roots. If 9, is used to test congruency, this irrep is of the spinor 
class, while the (1 + 1) other level-2 irreps are all of the tensor class. 

The situation is similar to that of the B‘” series, in that there is one other algebra 
with a narrow level 2 irrep. The irrep is ( 1  1) of A:’).  This algebra could be called D$”; 
the diagram is that which results when the last long root has been removed from 
between the shorter roots. I will refer to A$’)  as the smallest member of the Dj:)l( 1 3  1) 
series. The algebra A$’)  is the simplest of all affine algebras and is often discussed in 
the literature. It is interesting that some of its important properties are more closely 
related to the Dj:)l series than to the A{” series. 

4. The multiplicity formula for narrow irreps 

The form of the multiplicity formula is given in (1.1) and (1.2); nothing more is needed 
except the values of the factors X,. It can be shown that for all narrow level 1 irreps 
of algebras of classes I and 111, 

XI = W(jS) (4.1 ) 
where W(jS) is the multiplicity of the imaginary root (jS). These root multiplicities 
have been tabulated [4, p 1121. If j / k  is an integer then W(jS)  = 1, one less than the 
rank of the algebra. For the twisted algebras A$?)(IS l ) ,  all the W(jS)  are equal to 1. 
For the other twisted algebras, if j/ k is not an integer, the multiplicity is smaller, and 
is given by the equations, 

A$I1: W (  j S )  = I - 1 for j odd 

~ j : ) ~ :  W(jS) = 1 for j odd 

E L * ’ :  W(jS)=2  f o r j  odd 

Di3): W(jS)  = 1 for ( j /3)  non-integral. 

(4.2) 

For the narrow irreps of class I algebras and Ai?), (1.2) may be written in a simpler 
form. If J, is the sum of all the integral factors of i ( J ,  =Z, j )  then 

F, = JJ.  (4.3) 
Next we turn to the narrow level 1 irreps of the class I1 algebras Bjl). For these it 

can be shown that, 

X, ( jodd)= 1+1 X,( j even) = 1. (4.4) 
Finally, we consider the narrow level 2 series, of the algebras Di:)l, 12 1. For these 

the XI are also given by (4.4). 
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I take as an example of the calculation the q = 6 dominant weight of the narrow 
irrep of Di3). The integral factors of 6 are 1, 2, 3, and 6. From (4.1) the factor Xi = 2 
if j is a multiple of 3, and from (4.2), X j  = 1 for other j .  Therefore, from (1.2), 
F6 = 2(3 + 6) + ( i  +2)  = 21. In a similar manner one finds that the Fi for i = 1 to 5, are, 
respectively, 1, 3, 7, 7, and 6. Suppose one has calculated the multiplicities W(q) for 
q = 1 to 5 ;  they are 1, 2, 4, 6, and 9 respectively. Then, from (l.l), 

W(6) = i [  W(5) + 3  W(4) + 7  W(3)+7 W(2) + 6  W(1)+21 W(O)] = 16. 

5. Derivation of the multiplicity formula 

The results of ( l . l ) ,  (1.2), (4.1) and (4.4) are based on the Freudenthal recursion 
formula, in which the multiplicity W( M )  of the weight M in the irrep ii. is determined 
from the multiplicities of higher weights by the equations [2, equations (23)], 

W ( M ) = N / D  (5.1) 
L x  

N =  1 ( M + p a , a ) W ( M + p a )  
a > O  p = 1  

(5.2) 

D = + ( A +  M +2S, A -  M) (5.3) 

where the sum over a is over all positive roots (both real and imaginary) and S is the 
weight such that every Dynkin component is unity. We need to consider oniy weights 
M that are dominant, and so of the form A - q8. 

Before applying the formula, we establish some preliminary results. The multi- 
plicities of the positive real roots are all one. However, since there are an infinite 
number of these roots, we organize them in layers and families, as was done in a 
previous reference [7]. The root structure is based on the well-known fact, 

(5.4) 

for all integers r. Each real root belongs to a specific iayer. For the roots a of the 
( j  + 1) layer, the co-root-basis components of a - jk8 are all non-negative and the 
co-root-basis components of ( j  + 1) k8 - a are all non-negative. The real roots may all 
be written in the form 

if a is a root, then a + rk 8 is a root 

a, + jk6 ( 5 . 5 )  

where a, is a root of the first layer and j ranges through all the integers. The positive 
real roots correspond to non-negative values of j .  A family includes the roots for a 
particular aa and all values of j .  For every real root a there is a different, partner root, 
defined to be the root in the layer of a and the family of ( - a ) .  

Roots are called short, normal, or overlong, if their norms are less than 2, equal 
to 2, or greater than 2, respectively. Overlong roots exist only if the twist k is 2 or 3. 
It is known that if the k in the recursion relation of (5.4) were replaced by 1, the 
relation would still apply to all roots except the overlong roots. Therefore, for the 
short and normal roots each iayer may be separated into k minilayers. For these we 
remove the k in ( 5 . 5 ) .  The set of roots a, +jS, where a,  is in the first minilayer, 
represents a doubie or triple family (if k = 2 or 3). The minipartner of a short or normal 
root a is in the minilayer of a. If a and a‘ are minipartners in the first minilayer, then 
a + a’ = 6. 
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For any of the affine algebras, let v, and v, be the numbers of short and normal 
roots in a minilayer, and vo be the number of overlong roots in a layer. The values of 
these numbers for the algebras of classes I1 and I11 that contain narrow irreps are 
given in table 1. 

Next, we need a simple method of identifying the orbit of the M + p a  of (5 .2 ) .  The 
norm may be used for this. We consider the norm difference ( M ,  M)-(A,  A). If a 
weight is the type A - 96, then the Dynkin components of M and A are the same, so 
it follows from (2 .7)  that ( M ,  M)-(A, A) = -2phL/ch. Each time 8 is subtracted, ph 
is increased by ch, so we may write 

(5 .6 )  

Since the dominant weight of every orbit is of the type A - q6, and since the norm is 
invariant to Weyl reflections, (5.6) may be used to identify the orbit q of any weight 
in the irrep. The quantity of interest is A q  = q ( M )  - q ( M + p a ) .  This is given by 

( M ,  M )  - (A, A) = -2 Lq. 

A q = ( ( M + p a ,  M + p a ) - ( M ,  M ) ) / ( 2 L ) .  (5 .7 )  
The Coxeter number C and the dual Coxeter number C‘ are defined for a simple 

affine algebra by the equations, 

c =I c, C” =I c : .  
I I 

It is pointed out in [ 7 ]  that for all the simple affine algebras, the total number v of 
real roots in a layer [ v = k( v, + v,) + yo]  satisfies the equation 

v = IkC. ( 5 . 8 )  

We now limit attention to the twisted algebras with no short roots, the last four algebras 
of table 1. If W(q8) when q / k  is not integral is denoted by w, and this number is 
taken from (4.2), the layer sizes are taken from table 1, and the dual Coxeter numbers 
are taken from figure 2, it is seen that two additional relations are satisfied for these 
four algebras, 

v, = W C ”  (5.9) 

v o = ( I - w ) C ” .  (5.10) 

We are now ready to apply the Freudenthal formula to the weight M = A - q6. For 
definiteness we consider the three special cases of the level 1 irreps of the k = 2 algebras 
with no short roots. In the denominator, (5.3), A - M = qS. From (2 .6 ) ,  ( A +  M, q S )  = 2q 
and ( S ,  q6)= q C ‘ .  Therefore, the denominator of (5.3) is 

D =  q(1+  C “ ) .  (5.11) 

Table 1. Numbers of short and normal roots in a minilayer and overlong roots in a layer 
for affine algebras of classes I 1  and 111 that have narrow irreps. 

Algebra V5 Ut, VO 

21 21(1-1) 0 8“’ 

A$’ 21 2 1 ( 1 - 1 )  21 
A;?:, 0 2 1 ( 1 - 1 )  21 

0 21 2 / ( 1 -  1 )  0 ‘ 2 )  
/ + I  

E p  0 24 24 
0:’’ 0 6 6 
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The numerator N of (5.2) may be written as a sum of two terms, N = N"+ N", 
representing the contributions of imaginary and real roots to the sum over a. We 
consider N" first. Let a = jS ,  where J is a positive integer. Then, 

( M + p j S , j S ) = j ( M ,  S ) = j  (5.12) 

since the level of M is 1. The change in null depth q between M +pjS and M is pj. 
Therefore each imaginary root j S  contributes a factor of j whenever j is an integral 
factor of the change in null depth. There are W (  j S )  imaginary roots j .  Therefore, N" 
is given by 

(5.13) 

where the sum over j is over integral factors of i. It is convenient to replace W(jS)  by 
w + [ W ( j S ) -  w ] ,  where w = W(S)  (4.2). Since k = 2 ,  W(jS) -  w is 0 for odd j and 
( I  - w )  for even j .  Then N" is written as a sum of two pieces, 

(5.14) N" = N';" + N';" 

9 

i = l  
N';"= w J i W ( q - i )  

Nim= ( 1  - W )  W ( q  - i )  
i 

(5.15a) 

(5.15 b) 

where Ji is the sum of integral factors of i and Ji,,,,, is the sum of even integral 
factors of i. 

Since, for the cases under consideration the factors Xj of (1.2) are equal to W (  j S ) ,  
an analogous separation of the final result of ( 1  . l )  may be made. Thus, W (  q )  = W, + W,,  
where 

(5.16a) 

(5.166) 

We now turn to the contributions of the real roots. The contributions of the normal 
real roots and overlong real roots are called N;' and NY,  respectively. It is convenient 
to write the function J, as a sum of terms, each containing one or two integral factors 
of i, according to the following rules. Let 

J i  = C Jp,i 
P 

(5.17) 

where p runs through the integral factors of i that are not larger than ( i ) l i 2 .  The rules 
are, 

if p = ( i ) l i 2 ,  then Jp,i = p 

if p < (i)"', then Jp,i = p + ( i / p ) .  

(5.18a) 

(5.18 6 )  

For example, if i = 9, p takes the values 1 and 3, J l , 9  = 1 + 9  = 10 and J3,9 = 3. 
In accordance with the discussion below ( 5 . 5 ) ,  the normal root a is written in the 

form a, + jS ,  where a, is in the first minilayer and j is a non-negative integer. Then 
the scalar product (SP) of (5.2) is s ~ = ( M + p a , + p j S ,  a,+jS). Equation (2.5) is 
convenient for evaluating the scalar product ( M ,  a,) while the level equation (2.6) may 
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be used for scalar products involving S .  We take the unit Dynkin component of M to 
be the first component. Since M is of level 1 and a', = 2, 

s p = a : ( l ) + j + 2 p  (5.19a) 

The change in null depth, which is the i of ( l . l ) ,  may be calculated from (5.7). 

i=pcr:(l)+pj+p2. (5.19 b)  

where aI(1) is the first co-root basis element of a,. 

The result is 

If j' is defined by the equation j ' = j + a : ( l ) ,  the last two equations may be written, 

SP = 2p + j' (5.20a) 

i = p ( p + j r ) .  (5.20b) 

Since each pair of minipartners a,  and ah satisfy a, + ab = S and since c; = 1, the 
component a:( l )  is 0 for exactly half the roots a, and 1 for the other half. It is seen 
from (5.20a, b )  that the scalar products and i vaiues from these two sets of root 
double-families are the same, except that j '  starts with 0 for the a:( 1 )  = 0 terms and 
starts with 1 for the a:( l )  = 1 terms. 

Let us consider together all the terms for a fixed p .  The smallest value of i is p 2 ,  
corresponding to j' = 0. For this term only half the families contribute; the contribution 
to the N of (5.2) is 

(5.21) 

where i = p 2 .  Next we consider the terms j'> 0 in (5.20~1, b) .  All families contribute to 
these terms. The contribution is 

w W ( q  - P 2 )  = vf lpwq - i )  

where the last sum includes all i > p 2  such that i/p is an integer. The total contribution 
of all terms with a fixed p is 

(5.23) 

where Jp,i is the function of (5.18a, 6) .  If the contributions from all values of p are 
added, it is seen from (5.17) that the result is 

v n  C Jp,iW(q - i )  
I 

N r e - v  1 -  n CJiW(q- i ) .  
i 

(5.24) 

If one adds this to the N1" of (5.15a), the result is NI = N\"+NY= 
( w  + v,) Z, Ji W ( q  - i ) .  If (5.9) is used, 

N ,  = w ( l +  C") 1 J,W(q- i). 
I 

The factor (1 + C " )  cancels with that in D, so that 

u l , (q )  = Nl/D = ( l / q ) w  C J,W(q - i ) .  
1 

(5.25) 

(5.26) 

We next consider NY, the contributions of the overlong roots. As in (5 .5)  each 
positive overlong root a is written in the form a = a, + 2j6, where a, is in the first 
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layer and j is a non-negative integer. If  the same procedure used for the normal roots 
is followed, the equations analogous to (5.19a, b )  are 

SP= a:(1)+2j+4p 

i = p a  :( 1) + 2pj + 2p2. 

In this case the quantity j + i a : ( l )  is called j‘, so the equations may be written, 

SP = 4p + 2j’ 

i = 2p( p + j’). 

( 5 . 2 7 ~ )  

(5.27b) 

All overlong roots may be generated from the simple overlong roots by simple 
Weyl reflections. It can be shown from this fact and from the general structure of the 
Cartan matrix that all co-root-basis elements of overlong roots are integral multiples 
of the twist, in this case 2. Since cy = 1, and since an overlong root in the first layer 
and its partner satisfy a + a‘ = 26, it follows that a I( 1) is 0 for half the overlong roots 
and 2 for the other half, Therefore j’ is either j or j+  1. If (5.27a, b) are compared to 
(5.20a, b)  it is seen that for fixed p and j ’ ,  the scalar product and change in null depth 
are just twice the corresponding values for the normal roots. We have found earlier 
that the average contribution of a normal root double-family to the null depth ( q  - i )  
is J,. It is clear that the average contribution of an overlong root family is twice the 
sum of the integral factors of (fi). This is just the sum of the even integral factors of 
i. Therefore, 

NY = yo 1 JI,even W ( q  - i). 
I 

If this is added to N;” the result is 

N * = [ ( I - w ) +  volCJt,evenW(q-i) .  (5.28) 

If use is made of (5.10), 1 - w + vo = ( I  - w ) (  1 + C”). Again the (1 + C”) factor cancels 
that of (5.11), so 

(5.29) 

The Wl and W2 of (5.26) and (5.29) are equal to those of (5.16~1, b),  proving the result. 
In order to extend the above proof to the narrow representation of Dk”, one has 

only to make the obvious modifications necessary for a twist-3 algebra. The above 
proof includes as special cases the narrow irreps of the class I algebras A!’ ) ,  D!” and 
E ! ’ ) .  In these cases there are no Nim and NY. The entire contribution of the imaginary 
roots is called N’,’”, and the w in (5.26) is replaced by 1. Equation (5.8) is used to 
replace the factor v, = v in NY by IC”. (Recall that C = C”  for simply laced algebras). 

Tne sane  general techniques may be used to establish the results for the other 
cases, the levei 1 narrow irreps of A$)  and B!” and the level 2 narrow irreps of Dj:’,. 
In these cases one does not use (5.9) and (5.10) but writes the quantities in terms of 
1, using table 1. A few comments will be made about the contributions of the short 
roots to the irreps of A$’ and E ! ’ ) .  The co-root basis component aC(1) of every short 
root in the first minilayer is f. The total contribution of the short roots to the numerator 
N of (5.2) is 

I 

W, = N2/ D = ( 1/ q ) ( l -  w ) C Jr,even W ( q  - i ) *  
I 

v s  1 [ 3 ~ i , o d d + i ~ , , e v e n I  W ( q  - i) 

where Ji,odd is the sum of all odd integral factors of i. 
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6. Concluding remarks 

The narrow irreps of simple affine algebras are all the level 1 irreps of the simply laced 
algebras and the twisted algebras, the level 1 irrep of I?:')(/ 3 2) in which the unit 
Dynkin component is associated with the short simple root and the level 2 irrep of 
Dit),( I2 1) in which unit Dynkin components are associated with the two normal roots. 
The multiplicities for the dominant weights of these irreps are determined from (1.1) 
and (1.2), with the X, factors given in section 4. 

For these representations the multiplicities of non-dominant weights follow simple 
rules. Let M be a non-dominant set of Dynkin components that is congruent to A. 
Then, if one selects a convenient simple root Rh,  there is a weight MO of displacement 
Ph and components M that is in the top orbit, the orbit of A. The value of Ph may be 
determined from the condition that the norms of MO and A are equal. Each orbit q 
will then contain the weight MO - q8, with multiplicity W (  q ) .  
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